Greece’s Rio-Antirrio Bridge

rio-antirrio bridge

The proof of arithmetic is everywhere you look.  On my recent trip to Greece, this was proven profoundly through the artifacts and architecture in and around this gorgeous city. One of the most spectacular examples of the vivid world of arithmetic lives within the Rio-Antirrio Bridge, one of the world’s longest suspension bridges.

The support cables create a sail-like appearance!

The bridge is supported by four pylons; these are the large posts that reach from the bottom of the Gulf of Corinth to a whopping max of 524 feet (160m) above sea-level. Reaching further into the architecture arithmetic, each pylon splits into four beams creating an open area square pyramid atop the initial hexagonal structure of the lower pylon. This design was chosen in order to limit the amount of wind contact on each part of the bridge. The base of each pylon sits on the bottom of the gulf and is able to move laterally to absorb potential seismic activity.

Despite the use of the pylons, no part of the actual bridge is supported by the pylons, but by a multitude of suspension cables. Eight sets of 23 suspension cables connect from the top of each pylon to each of the five spans. The spans are all connected by six different expansion joints. When added together, they total an impressive 9,449 feet (2880m) in length across a 2- mile (3 km) expanse of water.

With so many visual measurements, basic arithmetic is easy to accomplish. How many support cables are there? How many pylons can you see? What shape is at the top of each pylon? These are just a few questions you could ask to stir immersive and critical learning centered around travel and bridges.

For more information see the links below.

https://en.wikipedia.org/wiki/Rio%E2%80%93Antirrio_bridge

http://www.industrytap.com/rio-antirrio-bridge-the-worlds-longest-multi-span-cable-system/3756

http://www.drgeorgepc.com/ArtRionAntirionBridge.html